PKA-activated ApAF–ApC/EBP heterodimer is a key downstream effector of ApCREB and is necessary and sufficient for the consolidation of long-term facilitation
نویسندگان
چکیده
Long-term memory requires transcriptional regulation by a combination of positive and negative transcription factors. Aplysia activating factor (ApAF) is known to be a positive transcription factor that forms heterodimers with ApC/EBP and ApCREB2. How these heterodimers are regulated and how they participate in the consolidation of long-term facilitation (LTF) has not, however, been characterized. We found that the functional activation of ApAF required phosphorylation of ApAF by PKA on Ser-266. In addition, ApAF lowered the threshold of LTF by forming a heterodimer with ApCREB2. Moreover, once activated by PKA, the ApAF-ApC/EBP heterodimer transactivates enhancer response element-containing genes and can induce LTF in the absence of CRE- and CREB-mediated gene expression. Collectively, these results suggest that PKA-activated ApAF-ApC/EBP heterodimer is a core downstream effector of ApCREB in the consolidation of LTF.
منابع مشابه
Repeated pulses of serotonin required for long-term facilitation activate mitogen-activated protein kinase in sensory neurons of Aplysia.
Long-term facilitation of the connections between the sensory and motor neurons of the gill-withdrawal reflex in Aplysia requires five repeated pulses of serotonin (5-HT). The repeated pulses of 5-HT initiate a cascade of gene activation that leads ultimately to the growth of new synaptic connections. Several genes in this process have been identified, including the transcriptional regulators a...
متن کاملEnhancement of Memory-Related Long-Term Facilitation by ApAF, a Novel Transcription Factor that Acts Downstream from Both CREB1 and CREB2
The memory for sensitization of the gill withdrawal reflex in Aplysia is reflected in facilitation of the monosynaptic connection between the sensory and motor neurons of the reflex. The switch from short- to long-term facilitation requires activation of CREB1, derepression of ApCREB2, and induction of ApC/EBP. In search for genes that act downstream from CREB1, we have identified a transcripti...
متن کاملAU-rich element-binding protein negatively regulates CCAAT enhancer-binding protein mRNA stability during long-term synaptic plasticity in Aplysia.
The consolidation of long-term memory for sensitization and synaptic facilitation in Aplysia requires synthesis of new mRNA including the immediate early gene Aplysia CCAAT enhancer-binding protein (ApC/EBP). After the rapid induction of ApC/EBP expression in response to repeated treatments of 5-hydroxytryptamine (5-HT), ApC/EBP mRNA is temporarily expressed in sensory neurons of sensory-to-mot...
متن کاملCircadian regulation of a transcription factor, ApC/EBP, in the eye of Aplysia californica.
The transcription factor, ApC/EBP (Aplysia CCAAT enhancer-binding protein) is an immediate early gene that is rapidly induced by serotonin and the cAMP signaling pathway. ApC/EBP acts as an important link following the activation of protein kinase A (PKA) in the consolidation of long-term memory in Aplysia californica. In this study, we report that levels of ApC/EBP mRNA in the eye of Aplysia a...
متن کاملA Nucleolar Protein ApLLP Induces ApC/EBP Expression Required for Long-Term Synaptic Facilitation in Aplysia Neurons
In Aplysia, long-term synaptic plasticity is induced by serotonin (5-HT) or neural activity and requires gene expression. Here, we demonstrate that ApLLP, a novel nucleolus protein, is critically involved in both long-term facilitation (LTF) and behavioral sensitization. Membrane depolarization induced ApLLP expression, which activated ApC/EBP expression through a direct binding to CRE. LTF was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 174 شماره
صفحات -
تاریخ انتشار 2006